Reach native speed with MacOS llama.cpp container inferen...

2 of 15

Reach native speed with MacOS
llama.cpp container inference

Reaching native performance on macOS llama.cpp container inference
with APl remoting

September 18, 2025 Kevin Pouget

Related topics: APIs, Artificial intelligence, Containers, Developer Tools,
Virtualization

Related products: Podman Desktop

Share: 8 f In =&

[@ Table of contents: v

Containers are Linux, but they can still run on macOS with the help of a
thin virtualization layer, inside a Linux virtual machine. But while the CPU
and RAM are accessed at native speed, GPU acceleration has always been
a challenge.

Earlier this year, we demonstrated how the enablement of Venus-Vulkan
boosted GPU computing performance by 40x, reaching up to 75-80% of
the native performance. In this post, we introduce a preview of our latest
work, which closes the gap and brings 1lama.cpp Alinference to
native speed in most use cases.

Prompt Processing Throughput
(pp512 - in tokens/s)

Test
M ggml-metal - Native
M ggml-remoting - Containerized
B ggml-vulkan(venus) - Containerized

1000

800

o
=3
=3

Higher is better

Throughput (in tokens/s) )
b
8

https://developers.redhat.com/articles/2025/09/18/reach-nati...

10/20/25, 1:43 PM


https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/author/kevin-pouget
https://developers.redhat.com/topics/api-management
https://developers.redhat.com/topics/api-management
https://developers.redhat.com/topics/api-management
https://developers.redhat.com/topics/api-management
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/ai-ml
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/containers
https://developers.redhat.com/topics/developer-tools
https://developers.redhat.com/topics/developer-tools
https://developers.redhat.com/topics/developer-tools
https://developers.redhat.com/topics/developer-tools
https://developers.redhat.com/topics/virtualization/all
https://developers.redhat.com/topics/virtualization/all
https://developers.redhat.com/products/podman-desktop/overview
https://developers.redhat.com/products/podman-desktop/overview
https://developers.redhat.com/#twitter
https://developers.redhat.com/#twitter
https://developers.redhat.com/#twitter
https://developers.redhat.com/#facebook
https://developers.redhat.com/#facebook
https://developers.redhat.com/#facebook
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#email
https://developers.redhat.com/#email
https://developers.redhat.com/#email
https://developers.redhat.com/#twitter
https://developers.redhat.com/#facebook
https://developers.redhat.com/#linkedin
https://developers.redhat.com/#email
https://www.redhat.com/en/blog/containers-are-linux
https://www.redhat.com/en/blog/containers-are-linux
https://developers.redhat.com/articles/2025/06/05/how-we-improved-ai-inference-macos-podman-containers
https://developers.redhat.com/articles/2025/06/05/how-we-improved-ai-inference-macos-podman-containers

Reach native speed with MacOS llama.cpp container inferen... https://developers.redhat.com/articles/2025/09/18/reach-nati...

Figure 1: Token generation throughput performance comparison between native,
APl remoting, and Vulkan-Venus acceleration on the M4 Pro MacBook Pro 48 GB
system.

The llama.cpp APl remoting architecture

The challenge of running Al inference inside containers on macOS is that
OCI containers do not run natively on macOS—they need the Linux kernel.
So, Podman launches a Linux virtual machine, powered by the open
source libkrun/krunkit projects.

Our APl remoting accelerator runs on top of libkrun ‘s VirtlO virt-
gpu support and leverages the same technique as Mesa Venus-Vulkan:
forwarding API calls between the virtual machine and the host system.
The Mesa project provides a general-purpose solution, where the calls to
the Vulkan API are serialized with the Venus protocol, and forwards them
to the host via the Virtio virt-gpu . On the host, the

virglrenderer library deserializes the call parameters and invokes
the MoltenVK Vulkan library, which is built on top of Apple Metal API.

On our acceleration module, we chose to focus on a narrower target: Al
inference with 1lama.cpp GGML tensor library. The acceleration stack
consists of four components:

¢ ggml-remotingfrontend, a custom GGML library implementation
running in the container of the Linux virtual machine.
e Llibkrun 'svirtio-gpu andits Linux driver (unmodified).

e virglrenderer, a modified version of the upstream library that
supports loading a secondary library and forwarding calls to it.

e ggml-remotingbackend, a custom GGML library client running on
the host. It receives call requests from the virglrenderer and
invokes the ggml-metal library to drive the llama.cpp GPU

30f15 10/20/25, 1:43 PM


https://www.redhat.com/en/blog/run-containers-mac-podman
https://www.redhat.com/en/blog/run-containers-mac-podman
https://github.com/containers/libkrun
https://github.com/containers/libkrun
https://mesa3d.org/
https://mesa3d.org/
https://github.com/crc-org/llama.cpp/tree/b6298-remoting-0.1.6/ggml/src/ggml-remotingfrontend
https://github.com/crc-org/llama.cpp/tree/b6298-remoting-0.1.6/ggml/src/ggml-remotingfrontend
https://github.com/crc-org/llama.cpp/tree/b6298-remoting-0.1.6/ggml/src/ggml-remotingfrontend
https://gitlab.freedesktop.org/kpouget/virglrenderer/-/blob/v1.1.1-remoting-0.1.4/src/apir.c
https://gitlab.freedesktop.org/kpouget/virglrenderer/-/blob/v1.1.1-remoting-0.1.4/src/apir.c
https://gitlab.freedesktop.org/kpouget/virglrenderer/-/blob/v1.1.1-remoting-0.1.4/src/apir.c
https://github.com/crc-org/llama.cpp/tree/b6298-remoting-0.1.6/ggml/src/ggml-remotingbackend
https://github.com/crc-org/llama.cpp/tree/b6298-remoting-0.1.6/ggml/src/ggml-remotingbackend
https://github.com/crc-org/llama.cpp/tree/b6298-remoting-0.1.6/ggml/src/ggml-remotingbackend

Reach native speed with MacOS llama.cpp container inferen... https://developers.redhat.com/articles/2025/09/18/reach-nati...
acceleration.

Figure 2 shows an overview of the architecture.

HOST | VM

virtual| 6,PU device

(" keunkit/lbkeun ) - e

[ virtgpu dev J :(2) _?F:’ [ virtgpu driver J

(Virglre,nde,rer) %)— =
Ggml-r‘emo'ting (Lo\cke,nd)\ T __§ [ ml-remotin
.................................... § (Frontend) b
ggml-metal \ /\
s o g
Apple Metal framework “o‘MO"QPP
~ J PR
& Boto potin |
&PV ! host- Puest 3\ 4

2. skare mem |

. -

Figure 2: Overview of our llama.cpp APIremoting architecture.

Considerations for APl remoting

A frequent question about APl remoting is whether it breaks VM/container

isolation.

By nature, it creates a communication link between the VM container and
the host system to access the GPU, so it does indeed breach part of the
VM isolation. However, it's a matter of trade-offs between performance

and strong isolation.
Key advantages in this proof-of-concept implementation:

e The VM hypervisor runs with simple user privileges. This is by design
of the Podman machine/ libkrun stack and not specific to this

work.

e The back end and the GPU only execute trusted code. It is

4 of 15 10/20/25, 1:43 PM



Reach native speed with MacOS llama.cpp container inferen...

50f15

the ggml-metal back-end library, loaded by the hypervisor on
the host, contains all the necessary GPU kernel code. This
eliminates a whole class of risks coming from the execution of
malicious kernels.

Current limitations and considerations:

e The back-end library lives within the hypervisor address space. A
crash within the back-end library could bring down the hypervisor.
This extends the risk of a vulnerability in the trusted code that can
be exploited by a malicious model. The mature and sound

1lama.cpp code base, along with vulnerability management
techniques and patching, would reduce this.

¢ The back-ends of multiple containers run in the same address
space. (Note: While the current implementation only allows one
container to run at a time, this limitation is slated to be lifted in
future releases.) But from the GPU point of view, the different
containers are notisolated:

¢ In terms of execution, invalid operations from one container can
crash another container.

e In terms of security, one container might be able to access the
GPU data of another container. This threat is mitigated by the
fact that the containers do not provide the GPU kernel code;
they can only trigger existing ggml-metal kernels. However,
the threat is not fully eliminated; vulnerabilities could still exploit
it.

Overall, we can say that this APl remoting design isn't multitenant safe.

APl remoting benchmarks

We validated the stability and performance of our acceleration stack by
running the llama.cpp 's llama-bench benchmark over various
model families, sizes, and quantizations on different Mac systems. We
looked at the performance of prompt processing pp512 , which
measures how fast the Al engine processes the input text (relevant when

https://developers.redhat.com/articles/2025/09/18/reach-nati...

10/20/25, 1:43 PM



Reach native speed with MacOS llama.cpp container inferen... https://developers.redhat.com/articles/2025/09/18/reach-nati...

feeding large documents), and token generation ( tg128 ), which
measures how fast the Al generates text (important for the user
experience).

Testing with various Mac hardware

Figures 3 and 4 show the prompt processing and token generation
performance benchmarks with different Mac systems.

Prompt Processing Throughput
(pp512 - in tokens/s)

1000 Test

994 M ggml-metal - Native
857
411
I I
0 I I
M1

B ggml-vulkan(venus) - Containerized

8

o
=]

o
=3
=]

Higher is better

a4

Throughput (in tokens/s) )
8

2

=3
=]

M ggml-remoting - Containerized
Max MacBook Pro 64 GB M2 MacMini 24 GB M2 Pro MacBook Pro 32GB M3 MacBook Air 16 GB M4 Pro MacBook Pro 48GB

Figure 3: Prompt processing performance with various Mac hardware.

Token Generation Throughput

(tg128 - in tokens/s)
90

Test
M ggml-metal - Native
M ggml-remoting - Containerized

M ggml-vulkan(venus) - Containerized
67
39 .

M1 Max MacBook Pro 64 GB M2 MacMini 24 GB M2 Pro MacBook Pro 32GB M3 MacBook Air 16 GB M4 Pro MacBook Pro 48GB

Higher is better

Throughput (in tokens/s) )
=]

~
o

=
5]

o

Figure 4: Token generation performance with various Mac hardware.

6 of 15 10/20/25, 1:43 PM



Reach native speed with MacOS llama.cpp container inferen... https://developers.redhat.com/articles/2025/09/18/reach-nati...

We can see that overall, the 1lama.cpp APIremoting performance is
mostly on par with native Metal performance. In the following tests, we
only used the M4 Pro MacBook Pro 48 GB system.

The lower performance of the M2 Mac Mini and M3 MacBook Air systems
most likely comes from the bottleneck of their RAM bandwidth, which is
limited to 100 GB/s, while the other systems have more than double.

Testing with various model families

Figures 5 and 6 show the prompt processing and token generation
performance benchmarks with different model families: granite3.3,
llama3.2, mistral, phi, qwen (all from the Ollama repository, with the latest
tag) on the M4 Pro MacBook Pro 48 GB system.

We see that with the 1lama.cpp APIremoting acceleration, prompt
processing and token generation are done at the native speed.

Prompt Processing Throughput
(pp512 - in tokens/s)

1000 Test

993 M ggml-metal - Native
902
879
800
751

600

4 423

| I I

0 " 5 )
gemma3 granite3.3 llama3.2 mistral phi qwen

M ggml-remoting - Containerized
Figure 5: Prompt processing performance with various model families.

B ggml-vulkan(venus) - Containerized

=3

Higher is better

Throughput (in tokens/s) )
8

=]
=]

Token Generation Throughput
(tg128 - in tokens/s)
67

20
Test

M ggml-metal - Native
M ggml-remoting - Containerized
MW ggml-vulkan(venus) - Containerized

L

7 of 15 10/20/25, 1:43 PM

) tokens/s) )
| better


https://ollama.com/library/granite3.3:8b
https://ollama.com/library/granite3.3:8b
https://ollama.com/library/llama3.2:3b
https://ollama.com/library/llama3.2:3b
https://ollama.com/library/mistral:7b
https://ollama.com/library/mistral:7b
https://ollama.com/library/phi:2.7b
https://ollama.com/library/phi:2.7b
https://ollama.com/library/qwen:4b
https://ollama.com/library/qwen:4b

Reach native speed with MacOS llama.cpp container inferen...

8 of 15

40

Higher is

Throughput (ir

30
20
10

oM1 Max MacBook Pro 64 GB M2 MacMini 24 GB M2 Pro MacBook Pro 32GB M3 MacBook Air 16 GB M4 Pro MacBook Pro 48GB

Figure 6: Token generation performance with various model families.

Testing with various model sizes

Figures 7 and 8 show the prompt processing and token generation
performance benchmarks with different sizes of the 11lama2 ,

1llama3.1 ,and 1lama3.2 models on the M4 Pro MacBook Pro 48
GB system.

We see that with the 1lama.cpp APIremoting acceleration, prompt
processing was done at native speed, and the token generation is near
native. The highest difference (95% of native) is observed with the
smallest model, where the processing time gets low and the API remoting
overhead becomes visible:

e 151.59 t/s < 1tokenevery 6.6ms
e 145.29 t/s < 1tokenevery 6.7ms

Prompt Processing Throughput
(pp512 - in tokens/s)
3000 Test
B ggml-metal - Native
M ggml-remoting - Containerized
B ggml-vulkan(venus) - Containerized
2500

2000

1500

Throughput (in tokens/s) )
Higher is better

1000

500

‘ 249

| |
1b (llama3.2) 3b (llama3.2)

8b (llama3.1) 13b (llama2)

| PR A 1 TP R e ma ¥ SRR PO T PRI [ G

https://developers.redhat.com/articles/2025/09/18/reach-nati...

10/20/25, 1:43 PM



Reach native speed with MacOS llama.cpp container inferen... https://developers.redhat.com/articles/2025/09/18/reach-nati...

rigure 7. riolnpL processiing periorindalice witn Lidiid 1moddel si£es.

Token Generation Throughput
(tg128 - in tokens/s)
Test
M ggml-metal - Native
M ggml-remoting - Containerized

=5 W ggml-vulkan(venus) - Containerized

120

152
60
0 .

1b (llama3.2) 3b (llama3.2) 8b (llama3.1) 13b (llama2)

Throughput (in tokens/s) )
Higher is better
3

»
S

N
=)

Figure 8: Token generation performance with various model families.

In the next section, I'll walk you through the steps to get the
1lama.cpp APIremoting running on your system and how to run the
back end to validate the performance.

Try with Podman Desktop

Install this extension in Podman Desktop:

quay.io/crcont/podman-desktop-remoting-ext:v0.1.3 b6298-remof
Copy snippet

Then select the following menus in the 1lama.cpp APIremoting status
bar:

1. Restart Podman Machine with APl remoting support: This restarts
the Podman machine with the APl remoting binaries.
2. Launch an APl Remoting accelerated Inference Server:
a. Select the model.
b. Enter a host port.

c. Wait for the inference server to start. The first l[aunch takes a bit

9 of 15 10/20/25, 1:43 PM



Reach native speed with MacOS llama.cpp container inferen... https://developers.redhat.com/articles/2025/09/18/reach-nati...

of time, as it pulls the Ramal.ama remoting image, and
1lama.cpp needs to precompile and cache its GPU kernels.

3. Play with the model that you launched, for example, with
RamalLama:

ramalama chat --url http://127.0.0.1:1234
Copy snippet

See the Benchmarking section for comparing the performance of API
remoting against Venus-Vulkan and native Metal on your system.

Try APl remoting with RamalLama

1. Download the APl remoting libraries:

curl -L -Ssf https://github.com/crc-org/1llama.cpp,
Copy snippet

2. Ensure that you have the Podman machine and krunkit
available (see the Prerequisites part of the tarball INSTALL.md),
and RamalLama 0.12.

3. Prepare the krunkit binaries to run with the API remoting
acceleration.

bash ./update krunkit.sh
Copy snippet

4. Restart the Podman machine with the APl remoting acceleration.
You can pass an optional machine name to the script if you don't
want to restart the default machine.

bash ./podman start machine.api remoting.sh [MACH:

Copy snippet

10 of 15

10/20/25, 1:43 PM


https://developers.redhat.com/articles/2025/09/18/reach-native-speed-macos-llamacpp-container-inference#run-benchmark
https://developers.redhat.com/articles/2025/09/18/reach-native-speed-macos-llamacpp-container-inference#run-benchmark
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/819/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci-mac5/1963157875618484224/artifacts/jump-ci-mac5/004-prepare/artifacts/test-artifacts/018__build_remoting_tarball/llama_cpp-api_remoting-b6298-remoting-0.1.6_b5/INSTALL.md
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/test-platform-results/pr-logs/pull/openshift-psap_topsail/819/pull-ci-openshift-psap-topsail-main-mac_ai-jump-ci-mac5/1963157875618484224/artifacts/jump-ci-mac5/004-prepare/artifacts/test-artifacts/018__build_remoting_tarball/llama_cpp-api_remoting-b6298-remoting-0.1.6_b5/INSTALL.md

Reach native speed with MacOS llama.cpp container inferen... https://developers.redhat.com/articles/2025/09/18/reach-nati...

5. Now you can use RamalLama with the remoting image:

export CONTAINERS MACHINE PROVIDER=libkrun # ensul
ramalama run --image quay.io/crcont/remoting:vo0. 1.

Copy snippet

Again, see the Benchmarking section below for comparing the
performance of APl remoting against Venus-Vulkan and native Metal on
your system.

Run the benchmark with RamalLama

To benchmark the APl remoting performance, the easiest way is to use the
RamalLama llama.cpp benchmark.

1. First, on Podman Desktop, stop any other API remoting inference
server by selecting Stop the APl Remoting Inference Server. Two
APl remoting containers cannot run simultaneously in this preview
version.

2. Select Show RamaLama benchmark commands. This will show the
following commands for Ramal.ama 0.12:

# API Remoting performance
ramalama bench --image quay.io/crcont/remoting:v0

Copy snippet

3. To compare it against the current container performance, launch the
benchmark with the default image:

# Venus/Vulkan performance
ramalama bench 1lama3.2

Copy snippet

4. And to compare it with native performance, launch RamalLama

withniit a ~rAantainar:

11 of 15

10/20/25, 1:43 PM


https://ramalama.ai/
https://ramalama.ai/

Reach native speed with MacOS llama.cpp container inferen...

12 of 15

VVILIINV UL U ViHITLurrina 1 .

brew install llama.cpp
# native Metal performance
ramalama --nocontainer bench 1llama3.2

Copy snippet

If you want to share your experience or performance on crc-org/
llama.cpp, also include:

e The version of the tarball ( Llama cpp-api remoting-b6298-
remoting-0.1.6 b5 )

e The name of the container image ( quay.io/crcont/
remoting:v0.12.1-apir.rcl apir.b6298-
remoting-0.1.6 b5 )

e Or the version of the Podman Desktop extension
(v0.1.3 b6298-remoting-0.1.6 b5 ).

e The output of this command:

system profiler SPSoftwareDataType SPHardwareData

Copy snippet

Conclusion

This project was started to evaluate the suitability of APl remoting to
improve the performance of containerized Al inside MacOS virtual
machines. The initial investigations confirmed that the core components
were available in the stack: host-guest memory sharing and the ability for
the guest to trigger code execution on the host. The VirtlO Virt-GPU
implementation, which spans between the Linux guest kernel and the
hypervisor, already provides these capabilities.

So, the proof-of-concept development effort first focused on extracting
and adapting the relevant code from Mesa Venus and Virglrenderer to
make it reusable in more lightweight projects. The second focus was on

https://developers.redhat.com/articles/2025/09/18/reach-nati...

10/20/25, 1:43 PM


https://github.com/crc-org/llama.cpp/
https://github.com/crc-org/llama.cpp/
https://github.com/crc-org/llama.cpp/
https://github.com/crc-org/llama.cpp/

Reach native speed with MacOS llama.cpp container inferen...

13 of 15

forwarding the GGML API calls between the guest and the host. The last
focus was to optimize the interactions to improve the performance.

Next steps

The next steps for this work are to submit the changes upstream to the
llama.cpp and virglrenderer projects. Once the patches are

accepted, libkrun/krunkit and Ramalama/Podman Desktop will be

extended to ship the APl remoting libraries and enable them on demand.

Another step will be to review the use of the 1lama.cpp APIremoting
for Ramalama micro-VM, where libkrun isused in Linux systems to
improve the isolation level of Al containers.

Finally, we are considering turning this APl remoting project into a
framework that could be used to enable new workloads to run with GPU
acceleration inside virtual machines, such as PyTorch/MPS containers
running on Apple macOS.

Related Posts

How we improved Al inference on macOS Podman containers
Introducing GPU support for Podman Al Lab

How RamaLama runs Al models in isolation by default

How RamaLama makes working with Al models boring

LLM Compressor is here: Faster inference with vLLM

Distributed inference with vLLM

Recent Posts

A case study in Kubelet regression in OpenShift

https://developers.redhat.com/articles/2025/09/18/reach-nati...

10/20/25, 1:43 PM


https://developers.redhat.com/articles/2025/07/02/supercharging-ai-isolation-microvms-ramalama-libkrun#
https://developers.redhat.com/articles/2025/07/02/supercharging-ai-isolation-microvms-ramalama-libkrun#
https://developers.redhat.com/articles/2025/06/05/how-we-improved-ai-inference-macos-podman-containers
https://developers.redhat.com/articles/2024/09/10/gpu-support-podman-ai-lab
https://developers.redhat.com/articles/2025/02/20/how-ramalama-runs-ai-models-isolation-default
https://developers.redhat.com/articles/2024/11/22/how-ramalama-makes-working-ai-models-boring
https://developers.redhat.com/articles/2024/08/14/llm-compressor-here-faster-inference-vllm
https://developers.redhat.com/articles/2025/02/06/distributed-inference-with-vllm
https://developers.redhat.com/articles/2025/06/05/how-we-improved-ai-inference-macos-podman-containers
https://developers.redhat.com/articles/2025/06/05/how-we-improved-ai-inference-macos-podman-containers
https://developers.redhat.com/articles/2025/06/05/how-we-improved-ai-inference-macos-podman-containers
https://developers.redhat.com/articles/2024/09/10/gpu-support-podman-ai-lab
https://developers.redhat.com/articles/2024/09/10/gpu-support-podman-ai-lab
https://developers.redhat.com/articles/2024/09/10/gpu-support-podman-ai-lab
https://developers.redhat.com/articles/2025/02/20/how-ramalama-runs-ai-models-isolation-default
https://developers.redhat.com/articles/2025/02/20/how-ramalama-runs-ai-models-isolation-default
https://developers.redhat.com/articles/2025/02/20/how-ramalama-runs-ai-models-isolation-default
https://developers.redhat.com/articles/2024/11/22/how-ramalama-makes-working-ai-models-boring
https://developers.redhat.com/articles/2024/11/22/how-ramalama-makes-working-ai-models-boring
https://developers.redhat.com/articles/2024/11/22/how-ramalama-makes-working-ai-models-boring
https://developers.redhat.com/articles/2024/08/14/llm-compressor-here-faster-inference-vllm
https://developers.redhat.com/articles/2024/08/14/llm-compressor-here-faster-inference-vllm
https://developers.redhat.com/articles/2024/08/14/llm-compressor-here-faster-inference-vllm
https://developers.redhat.com/articles/2025/02/06/distributed-inference-with-vllm
https://developers.redhat.com/articles/2025/02/06/distributed-inference-with-vllm
https://developers.redhat.com/articles/2025/02/06/distributed-inference-with-vllm
https://developers.redhat.com/articles/2025/10/20/case-study-kubelet-regression-openshift
https://developers.redhat.com/articles/2025/10/20/case-study-kubelet-regression-openshift
https://developers.redhat.com/articles/2025/10/20/case-study-kubelet-regression-openshift

